On Mining Rating Dependencies in Online Collaborative Rating Networks
نویسندگان
چکیده
The trend of social information processing sees e-commerce and social web applications increasingly relying on user-generated content, such as rating, to determine the quality of objects and to generate recommendations for users. In a rating system, a set of reviewers assign to a set of objects different types of scores based on specific evaluation criteria. In this paper, we seek to determine, for each reviewer and for each object, the dependency between scores on any two given criteria. A reviewer is said to have high dependency between a pair of criteria when his or her rating scores on objects based on the two criteria exhibit strong correlation. On the other hand, an object is said to have high dependency between a pair of criteria when the rating scores it receives on the two criteria exhibit strong correlation. Knowing reviewer dependency and object dependency is useful in various applications including recommendation, customization, and score moderation. We propose a model, called Interrelated Dependency , which determines both types of dependency simultaneously, taking into account the interrelatedness between the two types of dependency. We verify the efficacy of this model through experiments on real-life data.
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملEffect of Rating Time for Cold Start Problem in Collaborative Filtering
Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...
متن کاملApplication of Web usage mining and product taxonomy to collaborative recommendations in e-commerce
The rapid growth of e-commerce has caused product overload where customers on the Web are no longer able to effectively choose the products they are exposed to. To overcome the product overload of online shoppers, a variety of recommendation methods have been developed. Collaborative filtering (CF) is the most successful recommendation method, but its widespread use has exposed some well-known ...
متن کاملScaling Collaborative Filtering to Large-Scale Bipartite Rating Graphs Using Lenskit and Spark
Popular social networking applications such as Facebook, Twitter, Friendster, etc. generate very large graphs with different characteristics. These social networks are huge, comprising millions of nodes and edges that push existing graph mining algorithms and architectures to their limits. In product-rating graphs, users connect with each other and rate items in tandem. In such bipartite graphs...
متن کاملPrediction of user's trustworthiness in web-based social networks via text mining
In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...
متن کامل